Search results

1 – 10 of over 1000
Article
Publication date: 1 June 2015

Ece Kumkale Açikgöz

Structuring the outline for an architectural design studio experience has a significant role in students’ meaningful design experiences. Meaningful experience is related with…

Abstract

Structuring the outline for an architectural design studio experience has a significant role in students’ meaningful design experiences. Meaningful experience is related with students’ receptivity and idea generation for the ill-structured problems of architectural design. This identification influences the study, which investigates the application of a model for structuring the design studio experience, organized to occur in two phases; problem reception and problem solving. The model employs a combination of two different techniques with a special focus on reflexivity. It completes the extensions level required for the ICE Approach with the C-Sketch ideation technique by employing their adapted versions for architectural design studio practice. The common features of these techniques are their adaptability to any problem, explication centered and process oriented natures, focus on effective brainstorming and suitability on design teamwork studies. There is a remarkable potential to correlate the results of the two techniques.

The model was processed within a vertical design studio at Gazi University, Department of Architecture. It enabled getting use of diverse backgrounds within a design team by structuring the collective design process and optimizing the contribution rates of the team members. The method was employed to guide the design study of the experimental group of two teams with ten members in total. The control group was the randomly selected two teams from other teams that did not apply the model, with eleven members in total. The members of the two groups were applied a semi-structured questionnaire at the end of the semester, with a special focus on the internal consistency within the answers of the members of a single team. The results of the qualitative study indicated that the explication based structuring of the design studio experience has had a positive impact on achieving consistency and coherency in the design processes of the experimental groups.

Details

Open House International, vol. 40 no. 2
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 25 January 2011

M.K. Rendale, S.D. Kulkarni, D.C. Kulkarni and Vijaya Puri

The purpose of this paper is to investigate the effect of Mg2+substitution on the magnetic and electrical properties of Li0.35−x Mg2x Zn0.3 Fe2.35−xO4 thick films synthesized with…

Abstract

Purpose

The purpose of this paper is to investigate the effect of Mg2+substitution on the magnetic and electrical properties of Li0.35−x Mg2x Zn0.3 Fe2.35−xO4 thick films synthesized with polyvinyl alcohol (PVA) matrix.

Design/methodology/approach

The nanoferrites Li0.35−x Mg2x Zn0.3 Fe2.35−xO4 (x=0, 0.07, 0.14, 0.21, 0.28 and 0.35) were synthesized by chemical technique using aqueous solution of PVA (the matrix) and thick films were fabricated by screen printing technique. The DC magnetic hysteresis measurements, AC magnetic susceptibility and DC electrical resistivity were measured as a function of temperature.

Findings

The lattice parameter of thick film Li0.35−x Mg2x Zn0.3 Fe2.35−xO4 (x=0, 0.07, 0.14, 0.21, 0.28 and 0.35) increases with the substitution of Mg2+ions for Li1+and Fe3+. The surface morphology of the thick films showed the grain size increasing with Mg2+substitution till x=0.21 and then decreasing for the higher concentrations of magnesium. The magnetic moment nBB) computed from the Ms obtained by extrapolation of the magnetization curve showed a gradual decrease with the composition till x=0.21, beyond which a sudden decrease was observed. The resistivity of the films at room temperature had variation with composition x, similar to that of magnetic moment. The activation energies ΔEF and ΔEP were found to vary with composition x of the ferrite system.

Originality/value

The paper reports, for the first time, the magnetic and electrical properties of fritless Li0.35−xMg2xZn0.3Fe2.35−xO4 thick films using PVA polymer matrix. Up to x=0.21 (Mg2+), grain size increases and Curie temperature decreases beyond which reverse effect takes place.

Details

Microelectronics International, vol. 28 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 October 2018

Pankaj V. Katariya, Subrata Kumar Panda and Trupti Ranjan Mahapatra

The purpose of this paper is to develop a general mathematical model for the evaluation of the bending and vibration responses of the skew sandwich composite plate using…

Abstract

Purpose

The purpose of this paper is to develop a general mathematical model for the evaluation of the bending and vibration responses of the skew sandwich composite plate using higher-order shear deformation theory. The sandwich structural components are highly preferable in modern engineering application because of their desirable structural advantages despite the manufacturing and analysis complexities. The present model is developed to solve the bending and vibration problem of the skew sandwich composite plate with adequate accuracy numerically in the absence of the experimental analysis.

Design/methodology/approach

The skew sandwich composite plate structure is modelled in the present analysis by considering laminated face sheet in conjunction with isotropic and/or orthotropic core numerically with the help of the higher-order mathematical model. Further, the responses are computed numerically with the help of in-house computer code developed in matrix laboratory (MATLAB) environment in conjunction with finite element (FE) steps. The system governing equations are derived via variational technique for the computation of the static and the frequency responses.

Findings

The skew sandwich composite plate is investigated using the higher-order kinematic model where the transverse displacement through the thickness is considered to be linear. The convergence and the validation study of the bending and the frequency values of the sandwich structure indicate the necessary accuracy. Further, the current model has been used to highlight the applicability of the higher-order kinematics for the evaluation of the sandwich structural responses (frequency and static deflections) for different design parameters.

Originality/value

In the present paper, the bending and the vibration responses of the skew sandwich composite plate are analysed numerically using the equivalent single-layer higher-order kinematic theory for the isotropic and the orthotropic core numerically with the help of isoparametric FE steps. Finally, it is understood that the present model is capable of solving the sandwich structural responses with less computation cost and adequate accuracy.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 1989

Mukund S. Kulkarni

The last two decades were characterised by uncertainty in financial markets due to volatile interest rates. Consequently bond and money managers were interested in minimising…

Abstract

The last two decades were characterised by uncertainty in financial markets due to volatile interest rates. Consequently bond and money managers were interested in minimising interest rate risk. This was accomplished by developing immunisation strategies derived from the concept of duration. Consequently, almost all the relevant literature is limited to bond portfolio management. In this paper duration and immunisation concepts are discussed in the context of financial management: working capital management and capital budgeting techniques. In Section I, a brief review of bond duration measure is made. Section II describes the application of duration measures in bond immunisation strategies. In Section III, a duration measure is developed for working capital management technique. Section IV contains some secondary capital budgeting technique based on duration measure.

Details

Managerial Finance, vol. 15 no. 3
Type: Research Article
ISSN: 0307-4358

Article
Publication date: 1 August 2016

Pravin P Tambe and Makarand S Kulkarni

The traditional practice for maintenance, quality control and production scheduling is to plan independently irrespective of an interrelationship exist between them. The purpose…

Abstract

Purpose

The traditional practice for maintenance, quality control and production scheduling is to plan independently irrespective of an interrelationship exist between them. The purpose of this paper is to develop an approach for integrating maintenance, quality control and production scheduling. The objective is to investigate the benefits of the integrated effect in terms of the expected total cost of system operation of the three functions.

Design/methodology/approach

The proposed approach is based on the conditional reliability of the components. Cost model for integrating selective maintenance, quality control using sampling-based procedure and production scheduling is developed using the conditional reliability. An integrated approach is such that, first an optimal schedule for the batches to be processed is obtained independently while the maintenance and quality control decisions are optimized considering the optimal schedule on the machine. The expected total cost of conventional approach, i.e. “No integration” is calculated to compare the effectiveness of integrated approach.

Findings

The integrated approach have shown a higher cost saving as compared to the independent planning approach. The approach is practical to implement as the results are obtained in a reasonable computational time.

Practical implications

The approach presented in this paper is generic and can be applied at planned as well as unplanned opportunities. The proposed integrated approach is dynamic in nature, as during maintenance opportunities, it is possible to optimize the decision on maintenance, quality control and production scheduling considering the current age of components and production requirement.

Originality/value

The originality of the paper is in the approach for integration of the three elements of shop floor operations that are usually treated separately and rarely touched upon by researchers in the literature.

Details

International Journal of Quality & Reliability Management, vol. 33 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 2 March 2012

Patricia Penabad‐Duran, Xose M. Lopez‐Fernandez, Janusz Turowski and Pedro M. Ribeiro

The purpose of this paper is to apply a 3D methodology to assess the heating hazard on transformer covers and present a practical tool to design amagnetic inserts arrangement.

Abstract

Purpose

The purpose of this paper is to apply a 3D methodology to assess the heating hazard on transformer covers and present a practical tool to design amagnetic inserts arrangement.

Design/methodology/approach

A practical 3D methodology linking an electromagnetic analytical formulation with thermal finite element method is used for computation. Such methodology allows the evaluation of the temperature on metallic device elements heated by electromagnetic induction. This is a 3D problem which in the case of power transformers becomes especially difficult to apply due to the discretization requirement into the thin skin depth penetration compared to big machine dimensions.

Findings

From the numerical solution of the temperature field, decisions on dimensions and different amagnetic inserts arrangements can be taken to avoid hot spots on transformer covers.

Research limitations/implications

Some parameters presented in the model as heat exchange coefficients and material properties are difficult to determine from formulae or from the literature. The accuracy of the results strongly depends on the proper identification of those parameters, which the authors adjust based on measurements.

Originality/value

Differing from previous works found in the literature, which focus their results in power loss computation methods, this paper evaluates losses in terms of temperature distribution, which is easier to measure and validate over transformer covers. Moreover, an experimental work is presented where the temperature distribution is measured over a steel cover plate and a cover plate with amagnetic insert.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 October 2019

Naglaa M. Abdo, Wafaa S. Hamza and Mariam A. Al-Fadhli

The purpose of this paper is to assess the effectiveness of Kuwait Infection Control Directorate educational program in improving knowledge, attitude and practices (KAP) of…

Abstract

Purpose

The purpose of this paper is to assess the effectiveness of Kuwait Infection Control Directorate educational program in improving knowledge, attitude and practices (KAP) of environmental service workers (ESWs) regarding the management of infectious and sharps waste.

Design/methodology/approach

An interventional educational pre-test/post-test study was conducted over seven months, on a sample of 102 ESWs in Farwaniya General Government Hospital, Kuwait. Educational sessions and practical training using the KAP approach were applied during the intervention phase. The KAP of the participants were assessed using a questionnaire and observation checklist in the pre- and post-intervention phases.

Findings

Improvement in all aspects of the KAP regarding infectious and sharps waste management was observed among the participants after implementation of the intervention, with a statistically significant difference between pre- and post-test results (p<0.01).

Originality/value

The applied multi-component educational program in the current study can be successfully implemented for ESWs in all government hospitals in Kuwait and other countries with similar settings.

Details

International Journal of Workplace Health Management, vol. 12 no. 6
Type: Research Article
ISSN: 1753-8351

Keywords

Article
Publication date: 23 January 2009

M.K. Rendale, S.D. Kulkarni and Vijaya Puri

The aim of this paper is to investigate permittivity of nano structured Ni0.7‐xCoxZn0.3Fe2O4 thick films at microwave frequencies.

Abstract

Purpose

The aim of this paper is to investigate permittivity of nano structured Ni0.7‐xCoxZn0.3Fe2O4 thick films at microwave frequencies.

Design/methodology/approach

Nanosized Ni0.7‐xCoxZn0.3Fe2O4 ferrites with x=0, 0.04, 0.08 and 0.12 were prepared by sucrose precursor technique using the constituent metal nitrates. Thick films of the ferrites were fabricated on alumina substrates by screen‐printing technique. Microwave dielectric constant (ε′) and the loss factor (ε″) for the thick films were measured by VSWR slotted section method in the 8‐18 GHz range of frequencies. Microwave attenuation properties were studied using a waveguide reflectometer set up.

Findings

Both the ε′ and ε″ were found to vary with frequency and composition x. It is observed that, value of ε′ increases with increase in x, due to the increase in bulk density and reduction in porosity of the material, that resulted due to the substitution of cobalt in Ni‐Zn ferrite. The microwave transmission loss offered by the thick films was found to increase with the increase in cobalt concentration x. Within the band width of 4 GHz (from 12‐16 GHz), all the films except that with x=0.04 offered the reflection loss of less than 3 dB.

Originality/value

The dielectric constant of Ni0.7‐xCoxZn0.3Fe2O4 thick films have been reported for the first time. These thick films provide scope for cost effective planar ferrite devices.

Details

Microelectronics International, vol. 26 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 August 2010

D.C. Kulkarni and Vijaya Puri

The aim of this paper is to investigate microwave Ku band absorbance, complex permittivity, and permeability of SrFe12O19 thick films by a simple and novel waveguide technique.

Abstract

Purpose

The aim of this paper is to investigate microwave Ku band absorbance, complex permittivity, and permeability of SrFe12O19 thick films by a simple and novel waveguide technique.

Design/methodology/approach

The glass frit free or fritless strontium hexaferrite thick films were formulated on alumina by screen printing technique from the powder synthesized by chemical co precipitation method for pH 11 adjusted during the reaction. The 13‐18 GHz frequency band microwave absorbance of the SrFe12O19 thick films by a simple waveguide method. The complex permittivity and permeability of strontium hexaferrite thick films was measured by voltage standing wave ratio technique.

Findings

SrFe12O19 thick films show high ∼80 percent absorbance in the whole 13‐18 GHz frequency band. The thickness dependant microwave properties of strontium hexaferrite thick films were observed. The real permittivity ε′ lies in between eight and 35 with the variation in thickness of the thick film SrFe12O19. The real microwave permeability μ′ of strontium hexaferrite thick films lies in the range 1.12‐6.41. The resonance type behavior was observed at frequency 14.3 GHz. The SrFe12O19 thick film of thickness 30 μm could be a wide band (∼5,000 MHz) absorber with absorbance ∼87 percent for the whole 13‐18 GHz frequency band.

Originality/value

The complex permeability of strontium hexaferrite thick films was measured by simple novel waveguide method. The high absorbance (∼87 percent) of thick film SrFe12O19 over a broad band ∼5,000 MHz will be useful in achieving RAM coatings required for 13‐18 GHz frequency band.

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 May 2019

Ali Mostafaeipour, Hossein Goudarzi, Ahmad Sedaghat, Mehdi Jahangiri, Hengameh Hadian, Mostafa Rezaei, Amir-Mohammad Golmohammadi and Parniyan Karimi

In hot and dry climates, air conditioning accounts for a large portion of total energy consumption; therefore, this paper aims to investigate the impact of sol-air temperature and…

Abstract

Purpose

In hot and dry climates, air conditioning accounts for a large portion of total energy consumption; therefore, this paper aims to investigate the impact of sol-air temperature and ground temperature on the loss of cooling energy in hot and dry regions of Iran.

Design/methodology/approach

In line with this objective, the values of sol-air temperature along different directions and ground temperature at different depths were assessed with respect to climatic data of Yazd City. The impact of sol-air temperature and ground temperature on the rate of heat loss was investigated. So, energy loss of the walls aligned to four primary directions was calculated. This process was repeated for a 36 m2 building with three different shape factors. All analyses were conducted for the period from May to September, during which buildings need to be cooled by air conditioners.

Findings

Numerical analyses conducted for hot and dry climate show that sol-air temperature leads to a 41-17 per cent increase in the wall’s energy loss compared with ambient temperature. Meanwhile, building the wall below the surface leads to a significant reduction in energy loss. For example, building the wall 400 cm below the surface leads to about 74.8-79.2 per cent energy saving compared with above ground design. The results also show that increasing the direct contact between soil and building envelope decreases the energy loss, so energy loss of a building that is built 400 cm below the surface is 53.7-55.3 per cent lower than that of a building built above the surface.

Originality/value

The impact of sol-air temperature and ground temperature on the cooling energy loss of a building in hot and dry climate was investigated. Numerical analysis shows that solar radiation increases heat loss from building envelope. Soil temperature fluctuations decrease with depth. Heat loss from building envelope in an underground building is lower than that from building envelope in a building built above the ground. Three different shape factors showed that sol-air temperature has the maximum impact on square-shaped plan and minimal impact on buildings with east-west orientation.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 1000